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Diatoms are microscopic marine algae that are critical for global primary produc-

tion, carbon sequestration, and fisheries productivity. However, marine ecosys-

tems, and the fisheries they sustain, are threatened by select diatoms that form

harmful algal blooms. Identifying harmful blooms is necessary to effectively man-

age marine resources, but our current framework for identification is limited by

expensive and labor-intensive in situ point sampling. These point samples of-

fer only a fragmented view of harmful algal bloom distribution. To effectively

monitor these dynamic events in real time, we need a framework that combines

wide-area coverage with high spatial and temporal resolution. Recent advances in

hyperspectral remote sensing offer a promising path toward scalable, cost-effective

monitoring - but remote sensing’s ability to detect changes in dominance within

phytoplankton groups, e.g. diatoms, is currently unknown.



To address this, we cultured the three most dominant diatom genera within the

Northeast Pacific’s upwelling system, and this systems’ most abundant harmful al-

gae, Pseudo-nitzschia. We measured the hyperspectral absorption and backscatter

of these taxa, which were then used to model a spectral reflectance ’fingerprint’

that a remote observing platform (satellite/drone) might detect. Differences be-

tween fingerprints of these taxa were quantified using vector-based and statistical

analyses.

We found mean-spectral differences of 48% +/- 5% between the most dominant

diatom, Thalassiosira, and the most toxic diatom, Pseudo-nitzschia. Mean-spectral

differences of 29% +/- 11% and 34% were found between Pseudo-nitzschia and the

second, and third most abundant diatoms, Chaetoceros, and Asterionellopsis, re-

spectively. Successful identification of Pseudo-nitzschia’s reflectance fingerprint

was largely driven by the presence of a unique feature around 560 nm. The large

differences observed between spectral fingerprints suggest identification by remote

sensing is possible. This research leveraged new technologies to improve early de-

tection of harmful algal blooms, with the potential to provide advanced knowledge

for fisheries and aquaculture managers in a cost-effective and scalable way.
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Chapter 1: The world’s most ubiquitous primary producers

Algae live, in one from or another, nearly everywhere liquid water is present. Like

plants, algae trap carbon dioxide from their environment and in doing so produce

oxygen, while storing the carbon in their tissues. Large, multi-cellular algae make

up the seaweeds, while small, single-celled algae are called phytoplankton.

Phytoplankton are responsible for nearly half of the global net primary pro-

duction, assimilating roughly 52 petagrams (petagram = 1015 grams) of carbon

annually (Silsbe et al. 2016, T. Westberry et al. 2008). To put this in perspective,

the weight of 8 billion humans on earth would only be about half a petagram.

Oxygen production and carbon capture sustains nearly all heterotrophic marine

life, as phytoplankton are the primary source of fixed carbon for aquatic con-

sumers. Through a series of predator-prey interactions, this carbon makes it to

the commercially fished species that sustain the human populations and economies

(Costalago et al. 2020). Food from the sea currently accounts for around 15-17%

of total human protein consumption (Boyd, McNevin, and Davis 2022) with the

expectation that this will rise in the future to meet increased demand.
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1.1 Diatoms

Diatoms form a cosmopolitan subgroup of phytoplankton and play important roles

in productive ecosystems. Large diatoms (those greater than 10 um) quickly export

carbon to the benthic environment and deep ocean (Munk and Riley 1952, Waite

et al. 1997), while mediating efficient food webs (Chavez, Messié, and Pennington

2011). Diatoms are estimated to account for up to 25 percent of all oceanic primary

production (Tréguer et al. 1995, Moore et al. 2001b, Aumont et al. 2003, M. J.

Behrenfeld et al. 2021) and exhibit incredible diversity—indeed, the estimated

number of diatom species exceeds that of all other phytoplankton groups combined

(Kooistra et al. 2007). This species richness is partly due to diatom’s success in

upwelling systems, where intermittent, but intense injection of nutrients promote

bloom-conditions, facilitating genetic mixing. While the diatoms are characterized

by siliceous frustules and large vacuoles, extensive speciation has given rise to a

wide array of shapes, chain formations, and frustule characteristics that distinguish

individual taxa. These morphological differences often reflect unique physiologies

and ecological roles, with different genera contributing distinct ecological functions.

While blooming, diatoms greatly alter the marine environment (e.g. changes in

underwater light field, prey availability, biogeochemistry) and ecosystems therein.

Thalassiosira holds significant ecological importance due to its high lipid content -

up to 52% of its dry-weight (Yi et al. 2017, Bhattacharjya et al. 2020a). These lipid-

rich algae are key food sources for large zooplankton which sustain commercially

important fish species (Stock et al. 2017, W. T. Peterson et al. 2017). Pseudo-
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nitzschia is also ecologically significant, not for its nutritional value, but for its

ability to produce domoic acid - a compound capable of reshaping entire ecosystems

in a very different way.

1.2 Harmful Algae

Harmful algal blooms (HABs) are aggregations of algae that pose a threat to

human/ecosystem activities and health. Harmful algae alter organism/ecosystem

function through physical disruptions or chemical production. For example, Chaeto-

ceros setae can inflict damage to sensitive tissues like gills and have caused mass

mortalities (e.g. Bell 1961, Yang and Albright 1992). Mucus from Thalassiosira

blooms have had similar effects (Prasad, Nienow, and Lochner 2018). While most

diatoms do not produce toxins, Pseudo-nitzschia is a notable exception. Certain

species of Pseudo-nitzschia produce domoic acid, a potent neurotoxin that has

profound effects on both ecosystems and human health. Domoic acid begins to ac-

cumulate in filter feeders like shellfish and forage fish (anchovies, sardines). These

filter feeders are then eaten by marine mammals, seabirds, and fishes of commercial

importance, in which toxicity becomes acute. For marine mammals and humans,

domoic acid poisoning is devastating, leading to neurological damage, disorienta-

tion, seizures, and amnesia. In extreme cases it causes coma and death (Bates

et al. 2018). Of the 29 known toxin-producing Pseudo-nitzschia species, at least

21 have been found off the west coast of North America (Bates et al. 2019).

In 2015, the west coast of North America experienced record-breaking toxin
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levels from a Pseudo-nitzschia bloom that spread from British Columbia to Baja

California. The 2015 bloom closed recreational and commercial fisheries including:

mussels, razor clams, oysters, Dungeness and rock crabs, anchovies, and sardines.

This corresponded to an estimated revenue loss of $170 million for the Dungeness

Crab fishery alone (Pacific States Marine Fisheries Dungeness Crab Report 2014)

(inflation adjusted to ˜$230 million in 2025), placing stress on fishing communities,

and coastal towns reliant on tourism. The high levels of domoic acid caused severe

damage to marine ecosystems with effects propagating throughout the food web -

many of which we are yet to understand. Mass moralities and strandings of tens

of thousands of seabirds, seals, and sea lions occurred, with toxins also detected in

whales and dolphins (McCabe et al. 2016, Gibble et al. 2018). It is of utmost im-

portance for fisheries managers, aquaculturists, and coastal communities to know

when and where Pseudo-nitzschia is blooming in dense concentrations.

Current methods of detection require point samples of shellfish which has three

clear drawbacks. First, point samples result in poor spatial and temporal res-

olution of toxin distribution. Second, positive toxin detection means seafood is

already contaminated, and managerial decisions lag behind toxin accumulation -

even low concentrations of domoic acid have harmful effects (Lefebvre et al. 2017).

Finally, year-round point sampling is expensive (millions of dollars per year for

US coastal states (D. M. Anderson et al. 2000)). Alternatively, one can look for

Pseudo-nitzschia in water samples. Observed individually, the trained eye can eas-

ily identify Pseudo-nitzschia, however, trained eyes (phytoplankton taxonomists)

are expensive, as manual identification using a microscope can take days to get
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through but a handful of samples. Clearly, there is a strong need for a framework

that can rapidly identify Pseudo-nitzschia in real time over broad spatial scales to

mitigate human and fishery impacts.

1.3 Bio-Optics and the Spectral Fingerprint

Bio-optical tools allow us to observe the color and intensity of light in ways we

cannot imagine using the human eye. Our eyes have 3 color receptors, red, green,

and blue (Smith and Guild 1931), from which different combinations of intensity

form the rainbow of colors we may observe. Our eyes are multi-spectral, multi

meaning multiple (in this case 3), and spectral meaning color, for our 3 color re-

ceptors. In contrast, bio-optical tools may be hyperspectral, with new instruments

having hundreds, to thousands, of spectral channels. A picture taken from a hy-

perspectral platform (satellite, drone, handheld radiometer/camera) will provide

a spectrum, a combination of the color and intensity of reflected light. This spec-

trum is often a complex, non-linear function. This function provides information

about a subject’s interaction with light, which can be a proxy for other physical

processes of interest. A spectrum therefore provides a sort of fingerprint, that can

be used to infer the presence or absence of a physical substance and/or process.

Fingerprints of unique phytoplankton populations can be derived semi-empirically,

via inversion modeling (Gordon et al. 1988, Zaneveld 1995). Such models relate

in-situ measurements of light absorption and backscatter to the color and intensity

of light an observer would see (reflectance).
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It should be noted, however, that the many unique particles and dissolved

substances within the first optical depth (depth to which a satellite can see) each

contribute to ocean color based on their concentration, depth, and orientation.

Hence, one must consider the competing optical signatures of other constituents

when looking for the fingerprint of a specific group within any spectrum.

NASA’s latest satellite mission, PACE (Plankton, Aerosols, Clouds, and Ecosys-

tems), possesses a hyperspectral sensor with over 100 spectral channels. The

high-resolution spectra this provides, coupled with existing knowledge of com-

mon marine constituent’s optical properties, may help to identify the fingerprints

of functionally diverse phytoplankton and even HABs from space.

1.4 Absorption

One contributor to the optical properties of phytoplankton (how they interact

with light) are their pigments. Eukaryotic phytoplankton pigments are molecular

complexes held in the thylakoid membrane by adjoining proteins that serve to

capture as much visible light from the environment as possible and funnel this

energy to the photosystems to perform photosynthesis or disperse excess energy

as heat.

The way pigments interact with the surrounding light field is influenced by

how they are arranged within cells. Overlap of pigments results in intra-cellular

self-shading, known as the packaging effect (Duyens 1956). The size and inter-

nal structuring of chloroplasts, individual cells, and colonies, also influences the
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packaging effect, as large and more densely packed morphological features increase

self-shading. (Kirk 2010, Ciotti, Lewis, and Cullen 2002). This effect results in

a broadening of spectral peaks and shallowing of troughs, as wavelengths of light

that are statistically less likely to be absorbed (such as green light for chlorophyll

a) have more material to pass through before exiting the cell, increasing the proba-

bility of absorption. Alternatively, wavelengths of light where absorption is highly

probable (blue or red light for chlorophyll a) are already absorbed entirely after

passing through a much shorter path-length in this medium.

Absorption is a large contributor to reflectance spectra because all light that

is absorbed is eliminated from the light field, and therefore cannot be scattered

to reach our eyes or the satellite. Hence, for wavelengths of light where absorp-

tion is high (dependent on the phytoplankton-specific pigments) we have reduced

reflectance.

1.5 Backscatter

Backscatter is all scatter (redirection) of light that is in the backwards direction

(towards its source) which occurs after interactions with a particle or surface. In

the ocean, the shape, size, and orientation of the cell dictates the way light is

scattered. Smaller cells (e.g. bacteria) tend to scatter light more isotropically (in

all directions) and preferentially scatter shorter, higher energy (bluer) wavelengths

of visible light. Conversely, light interacting with relatively larger particles (e.g.

diatoms) tends to scatter a larger proportion in the forward (relative to backwards)
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direction, and has weak dependence on wavelength (color) (Mobley et al. 2022, Van

de Hulst 2012, Boss et al. 2001). The great diversity of shape and intracellular

structure of these taxa means the magnitude and direction of light scattering is

often unpredictable, however, there are some inferences we can make in relation to

the size of morphological features. For example, long, thin setae (spines) extend

from Chaetoceros spp. which we expect to preferentially scatter bluer wavelengths

due to their small size. The thin chitinous threads that bind Thalassiosira spp.

(Tran et al. 2023) might have similar effects - but these are likely weaker due to

chitin’s blue-green absorbance (Azofeifa, Arguedas, and Vargas 2012).

Backscatter measurements are challenging due to low scattering efficiencies.

For phytoplankton, we expect less than 0.1% of the total scattered light to be in

the backwards direction (Bricaud, Morel, and Prieur 1983). As a result of this

small signal, backscatter sensors often only measure 1 to 3 wavelengths with large

spectral bandwidths to measure as much of the available light as possible. This

low spectral resolution has limited our knowledge of backscatter spectral shapes

for complex (nonspherical) particles - despite models showing that backscatter

should have greater spectral variation (and therefore information) than the spec-

trum of total scatter alone (Morel and Bricaud 1981). This lack of intuition for

the spectral shape of backscatter means it is often assumed to be a monotonic

function (e.g. Lee, Carder, and Arnone 2002, Lee et al. 2009, Kostadinov, Siegel,

and Maritorena 2009, Gordon and Morel, 1983, Morel and Prieur 1977); while

this assumption works well for clear-oceanic waters, we anticipate it is hampering

ocean color models in highly productive systems dominated by non-normal particle
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size distributions (i.e. phytoplankton blooms). Backscatter forms the backbone of

ocean color (Boss et al. 2004), comprising all observable light leaving the ocean.

As such, it is critical that we deepen our understanding of backscatter’s spectral

behavior to monitor these highly-productive systems using remote sensing.

1.6 Summary

Phytoplankton are globally important primary producers. Diatoms are especially

important phytoplankton for their role in marine food webs, carbon cycling, and

oxygen production. Some of these diatoms can be harmful, but the majority are

beneficial and essential to marine ecosystem function. Early warning systems on

how marine ecosystems - and the resources they provide - may change is of great

importance. One way to assess ecosystem health and function is by monitoring

biodiversity. Biodiversity acts as a canary, with community assemblage shifts be-

ing early indicators of ecosystem change (Kavanaugh et al. 2021). But observing

the biodiversity of phytoplankton in the ocean is both difficult and costly, es-

pecially considering the large spatial scales (71% of the planet). The need to

understand global biodiversity, but the great difficulty in monitoring it, is one

of NASA’s ‘Grand Challenges’. NASA states that in order to better understand

ocean ecosystem change and plankton diversity we will need to integrate targeted

process studies with modeling and remote sensing (M. Behrenfeld et al. 2022). The

body of work to come details a targeted study on the bio-optical signatures of four

key phytoplankton taxa, which through inversion modeling, form the basis of a
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framework that aims to monitor their biodiversity using remote sensing.

This chapter has served to provide a brief overview of phytoplankton, harmful

algal blooms, and the theory behind their detection using remote sensing. Chapter

2 will use this theory to construct spectral fingerprints for four ecologically signif-

icant marine phytoplankton and explore several methods to distinguish between

fingerprints. We will then propose a framework for the identification of Pseudo-

nitzschia using ocean color. Chapter 3 will summarize this work and outline next

steps.
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Chapter 2: Hyperspectral Remote Sensing for Harmful Algal Bloom

Detection: Pseudo-nitzschia in the Northeast Pacific

2.1 Abstract

Diatoms are microscopic marine algae that are critical for global primary produc-

tion, carbon sequestration, and fisheries productivity. However, marine ecosys-

tems, and the fisheries they sustain, are threatened by select diatoms that form

harmful algal blooms. Identifying harmful blooms is necessary to effectively man-

age marine resources, but our current framework for identification is limited by

expensive and labor-intensive in situ point sampling. These point samples of-

fer only a fragmented view of harmful algal bloom distribution. To effectively

monitor these dynamic events in real time, we need a framework that combines

wide-area coverage with high spatial and temporal resolution. Recent advances in

hyperspectral remote sensing offer a promising path toward scalable, cost-effective

monitoring - but remote sensing’s ability to detect changes in dominance within

phytoplankton groups, e.g. diatoms, is currently unknown.

To address this, we cultured the three most dominant diatom genera within the

Northeast Pacific’s upwelling system, and this systems’ most abundant harmful al-

gae, Pseudo-nitzschia. We measured the hyperspectral absorption and backscatter

of these taxa, which were then used to model a spectral reflectance ’fingerprint’



12

that a remote observing platform (satellite/drone) might detect. Differences be-

tween fingerprints of these taxa were quantified using vector-based and statistical

analyses.

We found mean-spectral differences of 48% ± 10% between the most dominant

diatom, Thalassiosira, and the most toxic diatom, Pseudo-nitzschia. Mean-spectral

differences of 29% ± 13% and 34% ± 7% were found between Pseudo-nitzschia and

the second, and third most abundant diatoms, Chaetoceros, and Asterionellopsis,

respectively. Successful identification of Pseudo-nitzschia’s reflectance fingerprint

was largely driven by the presence of a unique feature around 560 nm. The large

differences observed between spectral fingerprints suggest identification by remote

sensing is possible. This research leveraged new technologies to improve early de-

tection of harmful algal blooms, with the potential to provide advanced knowledge

for fisheries and aquaculture managers in a cost-effective and scalable way.

2.2 Introduction

Phytoplankton are responsible for approximately half of global net primary produc-

tion, assimilating around 52 Pg of carbon annually (Silsbe et al. 2016, T. Westberry

et al. 2008). Diatoms form an important subgroup of phytoplankton, accounting

for roughly 20 percent of all marine primary production (M. J. Behrenfeld et al.

2021, Tréguer et al. 1995, Moore et al. 2001b, Aumont et al. 2003). Diatoms’

success in the marine environment is reflected in their incredible diversity, yet all

diatoms can be characterized by the presence of vacuoles and siliceous frustules.
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For large diatoms, the combination of size and mineral ballasting (from the frus-

tule) leads to significant carbon export. Carbon export from diatoms may comprise

up to 40 percent of the biological pump (Jin et al. 2006, Tréguer et al. 2018). Large-

bodied diatoms also mediate efficient energy transfer to higher trophic levels by

reducing the number of trophic interactions needed from primary producers to final

consumers, bypassing microbe-microbe interactions in favor of direct consumption

by zooplankton (Chavez, Messié, and Pennington 2011).

There are a few diatoms, however, that are noxious. Harmful algal blooms

(HABs) are defined as any aggregation of algae that poses a threat to human/ecosystem

health or is a nuisance to human activity. The diatom Pseudo-nitzschia is one of

the deadliest, with certain species able to produce a potent neurotoxin, domoic

acid, that propagates through marine food webs. Domoic acid bioaccumulates in

primary consumers such as shellfish and forage fish (anchovies, sardines) before

being eaten by marine mammals, seabirds, and fishes of commercial importance.

For marine mammals and humans, domoic acid poisoning is devastating, causing

the swelling and death of neurons, which induces disorientation, seizures, tempo-

rary or permanent memory loss, and in some cases, coma and death (Bates et al.

2018).

HAB identification is the first step in ecological analysis, fisheries management,

and early warning/management response. Identification using ocean color is likely

the most cost-effective way to assess ecosystem threats over large spatial and tem-

poral scales. To identify HABs using ocean color, we must develop spectral (color)

‘fingerprints’. These fingerprints are derived by measuring the optical properties
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(absorption and backscatter) of a specific taxon which are converted to what an

ocean color remote sensing platform might see using a reflectance proxy (Gordon et

al. 1988, Zaneveld 1995). In practice, however, isolating fingerprints from the ocean

is often confounded by the overlapping optical properties of dissolved substances,

detritus, and other phytoplankton. Fortunately, the bloom-forming diatoms cul-

tured in this study form dense surface aggregations that dominate the ocean color

signal. This dominance makes them particularly well-suited for identification using

spectral fingerprints.

To derive the spectral fingerprints, we need to measure backscatter. Backscat-

ter is a key component of ocean color and consists of all scattered light in the

backwards direction. Redirection occurs after interactions with a particle or sur-

face (Boss et al. 2004). Phytoplankton are highly-absorbing particles, making them

poor backscatters. As a result of this low signal, backscatter of marine phytoplank-

ton has rarely been measured in more than a few wavelengths. Consequently, our

knowledge of backscatter spectral shapes is limited. However, theoretical mod-

els, and a handful of empirical studies, have shown that hyperspectral backscatter

should have more pronounced features than total scatter (Morel and Bricaud 1981).

This conflicts with the common assumption that spectral backscatter lacks com-

plex features and shapes. Spectral backscatter is often assumed to be a monotonic

function, or even flat. We believe ocean color inversion models will advance signifi-

cantly, increasing their utility in detecting HABs, by incorporating the information

found in empirically derived backscatter spectral shapes.

In this study, we derived hyperspectral backscatter coefficients of the most
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dominant phytoplankton genera from a large upwelling system in the Northeast

Pacific, including the region’s most prominent HAB genera. This work was inspired

by that of Bricaud, Morel, and Prieur in 1981, the first to measure the hyperspec-

tral backscatter of marine phytoplankton, which noted that spectral backscattering

exhibits complex shapes, and contains more pronounced spectral features than the

spectrum of total scattering alone. Spectral backscatter values were divided by con-

current measurements of hyperspectral absorption to derive the reflectance proxy.

This modeled reflectance mimics the in situ reflectance an ocean-color satellite

would observe.

Our approach yielded distinct reflectance ”fingerprints”, each related to a

unique phytoplankton genera, under bloom conditions. We identified visually dis-

cernible, group-specific spectral features and applied statistical analyses to quantify

these differences. Pseudo-nitzschia, the dominant HAB taxa, exhibits a unique

feature in its modeled reflectance fingerprint, a bi-furcated peak near 560 nm.

Due to this feature, the spectral fingerprint of Pseudo-nitzschia is readily distin-

guishable from those of the three most abundant diatoms in this system—both

through visual assessment and using unsupervised classifying algorithms. These

results support future studies using remote sensing for the identification of harmful

Pseudo-nitzschia blooms in the Northeast Pacific.



16

2.3 Methods

2.3.1 Cultures

Four of the most abundant, bloom-forming genera of diatoms within the Northeast

Pacific’s large upwelling system were selected for this experiment. They are, in or-

der of cell abundance: Thalassiosisra rotula, Chaetoceros affinis, Asterionellopsis

glacialis, and Pseudo-nitzschia spp. (Du, W. Peterson, and O’Higgins 2015, Las-

siter et al. 2006). These plankton were obtained from the Bigelow National Center

for Marine Algae, except for Pseudo-nitzschia, which were clonal isolates from the

Washington and Oregon coast (P. fraudulenta, P. pungens, and P. seriata). Each

taxon was kept in exponential growth in triplicate 2 L Nalgene bottles as semicon-

tinuous batch cultures. All cultures were grown in an environmental control room

at 15°C with a salinity of 33 PSU, using L1 media (Guillard and Hargraves 1993).

Cultures were exposed to 400 µmol photons m2/s with a relatively flat white spec-

trum. The intensity and spectral distribution of the grow lights (a Phyton-Systems

light bank) were measured using a Satlantic Hyper-OCR and a QSL-scalar PAR

sensor. This light bank was scheduled on a 12:12 sinusoidal light-dark cycle to

simulate a natural day-night cycle. Cultures were kept in suspension by bubbling

with two aquarium air pumps (ProFILE 5500). Pumped air was filtered through

a hydrocarbon trap (Restek) before entering the cultures.

Cells were acclimated to growth conditions (light, nutrients, temperature) for

two months before experimental sampling to ensure steady-state, photoacclimated

growth. Cell and detrital abundance were quantified daily via an Imaging Flow
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CytoBot (IFCB). We also observed, using light microscopy, the presence of detri-

tus too small for the IFCB, and quantified it using a Coulter Counter (Beckman

Multisizer 3, 100 µm aperture). The biomass of detritus was small compared to

that of the live cells and detrital particles were almost entirely < 3 µm, much

smaller than this study’s phytoplankton which were > 10 µm (Table 1). Phyto-

plankton photophysiology was monitored using a fast repetition rate fluorometer

(FRRf). FRRf samples were exposed to 15 µmol photons/m2/s at 480 nm for 10

minutes to relax non-photochemical quenching (NPQ) before measurements were

made (Milligan, Aparicio, and M. Behrenfeld 2012). The amount of time and total

irradiance to fully relax NPQ varied by taxon, time of day, and cell physiology. We

conducted several experiments and found 15 µmol photons/m2/s for 10 minutes

to yield the highest Fv/Fm (˜0.6 ± 0.05) for these taxa on average.
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(a) Thalassiosira spp. (b) Chaetoceros spp.

(c) Asterionellopsis glacialis (d) Pseudo-nitzschia spp.

Figure 2.1: Representative diatom genera (reproduced with permission from the
Kudela Lab).

Table 2.1: Approximate cell size ranges for representative diatom species.

Individual Cell Sizes

Species width(µm) length(µm)

Thalassiosira rotula 8 - 60 5 - 20

Chaetoceros affinis 8 - 15 7 - 30

Asterionellopsis glacialis 5 - 8 30 - 150

Pseudo-nitzschia spp. 3 - 8 70 - 145
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2.3.2 Inline system

Measurements of phytoplankton absorption, scatter, and attenuation coefficients

were made using an AC-S (4 nm spectral sampling frequency). Backscatter was

measured using a Sequoia Hyper-BB (5 nm spectral sampling frequency). All bio-

optical measurements were made following the best practices for IOP measure-

ments (Boss et al. 2019). Instruments were configured in a darkened recirculating

flow-through inline system driven by a peristaltic pump (Slade et al. 2010). The

inline system was filled with 33 PSU, 0.2 µm filtered seawater, leaving sufficient

headspace to add 200mL of phytoplankton culture. After inoculation, the solu-

tion was allowed to recirculate and homogenize until AC-S and HyperBB data

approached a stable asymptote. Measurements were recorded for 10 to 15 minutes

and the median derived to reduce the influence of outliers and noise. This process

was repeated using a 5.0 µm filtrate of the sample to estimate the optical contri-

butions of detritus and colored dissolved organic matter (CDOM) to the culture.

Subtraction of the 5 µm filtrate’s optical signature from that of the total culture

isolated the diatom-specific optical signature.

Between daily sampling, the inline system was flushed with deionized wa-

ter. The optical windows and tubes of the AC-S were cleaned with 98% iso-

propyl alcohol and Milli-Q water, while the plastic HyperBB windows were cleaned

with soap and rinsed with Milli-Q. After cleaning, degassed Milli-Q blanks were

recorded for both the AC-S and HyperBB, which were then taken apart and cleaned

again until two baseline measurements agreed at the 0.005 m-1 and 0.0005 m-1
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level, respectively. All bio-optical data were recorded using the software Inlinino

(https://github.com/OceanOptics/Inlinino, Haëntjens and Boss 2020).

Measurements of absorption, backscatter, and total scatter were recorded for

triplicates of all genera, except Asterionellopsis. Due to a gain issue with the

HyperBB, only a single backscatter spectrum was obtained for Thalassiosira and

due to a pump failure at the end of sampling, the backscattering coefficients for

the final Pseudo-nitzschia triplicate, PN 3, were measured by placing this sam-

ple directly into the HyperBB light trap. The solution was stirred thoroughly

to homogenize and then measured (this sample had no detrital blank). To align

the spectral sampling frequency (4 nm for the AC-S and 5 nm for the HyperBB)

and center wavelengths of both instruments, AC-S data was linearly interpolated

to 1 nm resolution and then down-sampled to 5 nm. Intrataxon data were then

bootstrapped to provide more spectra for clustering algorithm analysis. The pri-

mary clustering algorithm used was an unsupervised machine learning algorithm,

k-means, from the open-source Python machine learning library Scikit-learn. Boot-

strapping consisted of backscatter spectra from triplicate cultures being divided by

all absorption spectra of the same genera (e.g. the backscatter spectra of PN 1 was

divided by absorption of PN 1, 2, and 3. The same was done for the backscatter

spectra of PN 2 and so on). To better compare spectral fingerprints between taxa,

each value within a spectrum was normalized by dividing it by the mean of the

entire spectrum. This method highlights variations in spectral shape rather than

overall magnitude.
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2.3.3 Modeling

The spectral fingerprints of our in vivo cultures, measured using the inline system,

can be related to in situ reflectances using the following equation (Gordon et al.

1988, Zaneveld 1995):

Rrsλ ≈ f

Q

bbλ
aλ + bbλ

, (2.1)

where Rrs(reflectance) is the parameter that describes the intensity and color of

light, at wavelength λ, leaving the ocean’s surface. The backscatter coefficient at

wavelength λ is represented by bb(λ), while a(λ) denotes the absorption coefficient

at wavelength λ. The symbols f and Q represent scaling factors which do not

affect the spectral shape. Because a(λ) is generally multiple orders of magnitude

greater than bb(λ), we can further approximate the equation to:

bbλ
aλ

, (2.2)

as the contribution of backscatter in the denominator is negligible.

2.3.4 Distance Metrics

Distance functions were used to distinguish between modeled spectral fingerprints

in a reliable, quantitative way. These functions are able to define the degree of sim-

ilarity between complex, non-linear spectra by assessing differences in translation

(center wavelength/hue), and standard deviation (full-width half max (FWHM)

or peakedness), of spectral features. Deborah, Richard, and Hardeberg 2015 and
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Deborah 2016 evaluated thirty-one distance functions for hyperspectral analysis.

Of these, we chose the Spectral Correlation Mapper (SCM) (Carvalho Júnior and

Meneses 2000) as the optimal tool for calculating the differences between phy-

toplankton fingerprints. Spectral Correlation Mapper builds from vector-based

angular methods which have a history of successful applications in remote sensing

(e.g. Kruse et al. 1993, Wei et al. 2022). These tools are unaffected by changes

in spectral magnitude and provide absolute differences between spectra. Spectral

Correlation Mapper uses Pearson’s correlation coefficient (r):

Spectral Correlation Mapper (r) =

∑n
i=1(Ai − Ā)(Bi − B̄)√∑n

i=1(Ai − Ā)2
∑n

i=1(Bi − B̄)2
(2.3)

Ā =
1

n

n∑
i=1

Ai B̄ =
1

n

n∑
i=1

Bi ,

to evaluate the degree of positive or negative linear correlation between mean-

standardized data. Spectral Correlation Mapper processes spectra as a distribu-

tion, appropriate for the highly correlated nature of hyperspectral data.

Spectral Correlation Mapper’s sensitivity to differences between spectral sig-

natures can be further improved through the application of derivative transforma-

tions. However, while derivatives excel at highlighting small features, the increased

sensitivity also amplifies noise, which must first be removed from the spectra. To

remove noise while preserving as many of the spectral features as possible, we used

a Savitzky-Golay filter. The Savitzky-Golay method preserves large spectral fea-

tures better than other techniques (such as mean or median filtering) by fitting an
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‘x’ order polynomial to the data within the filter window. This allows for spec-

trally wide nonlinear features to be conserved while low-level variations (noise)

are smoothed out. For these reasons, Savitzky-Golay smoothing is often used in

hyperspectral applications (e.g. Vandermeulen et al. 2017, Xi et al. 2015, Hunt

2024). The Savitzky-Golay filter has two tunable parameters, window length and

polynomial order. The goal is to find the ’goldilocks’ parameters where the data

are neither oversmoothed (thus losing important information) nor overfit (turning

noise into features). We used the Scipy.signal function savigol filter and chose a

window length of 13 (5 nm spacing x 13 = 65 nm windows) and a polynomial

order of 4 based on the iterations seen in the supplemental materials. Savigol filter

’mode’ was set to ’nearest’ to reduce boundary artifacts from the filter window

interacting with the end of the spectra (mode ‘nearest’ pads the end with values

identical to the last encountered). The option ’deriv’ was set to 2 (takes the second

derivative of the spectra).

2.4 Results

All cultured phytoplankton share local maxima of backscatter around 560/570 nm

(figure 2.2), the yellow-green region of our spectra. This feature likely corresponds

to the intersection between the absorbance of fucoxanthin and the secondary peaks

of chlorophyll b and c, forming an absorbance minimum. However, the absolute

lowest absorbance for all species throughout most of the visible range lies near

600 nm. While we observe local maxima in backscatter at 600 nm (figure 2.2),
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these wavelengths do not correspond to the greatest backscatter for any species.

Instead, local and total maxima around 560/570 nm appear in nearly all species,

being most pronounced for Asterionellopsis and Pseudo-nitzschia. For Pseudo-

nitzschia, the 560/570 nm peak is followed by a sharp decline to a local minima near

585 nm. The 585 nm feature in Pseudo-nitzschia’s backscatter spectra creates an

important feature in Pseudo-nitzschia’s reflectance fingerprint, seen as a bifurcated

peak in figure 4. The 585 nm feature appears more pronounced in Pseudo-nitzschia

than other taxa with similar absorption spectra. After the maximum green-yellow

(560/570 nm) backscatter peak, Pseudo-nitzschia and Asterionellopsis backscatter

less for bluer wavelengths, contrary to Thalassiosira and Chaetoceros (figure 2).

There is also a consistent trough for all spectra around 660 nm followed by a

large peak that overlaps with the chlorophyll Qy absorption band around 670 nm

(figure 2.3).
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(a) Mean-normalized backscatter spectra comparison.

(b) Mean-normalized backscatter by genera.

Figure 2.2: Normalized backscatter spectra for each species. Dots represent the
normalized median value of backscatter at each wavelength measured. Ribbons
represent one standard deviation from the median, colors distinguish each species.
Triplicate samples were measured for Pseudo-nitzschia and Chaetoceos. A mul-
tispectral comparison of Thalassiosira rotula from A. L. Whitmire et al. 2010 is
included in dark blue, with bars representing 1 standard deviation from the me-
dian. Multispectral and hyperspectral data were aligned at 620 nm for comparison.
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Figure 2.3 shows the absorption spectra for each of the cultured diatoms. While

the absorption spectra of triplicate cultures are very similar, we also observe a

greater similarity between taxa than in normalized backscatter (figure 2.2) or total

scatter spectra (figure 1, appendix). There are small deviations in the absorption

spectra of the third triplicate sample of Pseduo-nitzschia (PN 3) from the first and

second replicates (PN 1, PN 2), with slightly elevated mean-normalized values in

the blue region (400 – 440 nm), likely related to the aforementioned pump failure

for this sample. Thalassiosira has the strongest shoulder at 470 nm from the

pigment fucoxanthin. Asterionellopsis has the largest ratio of Qy to Soret band

(chlorophyll a absorption in the red vs blue, respectively). Chaetoceros appears to

have the broadest peak for the Soret band and the lowest relative absorption of

carotenoids (pigments in roughly the 470 - 650 nm range).

The greatest and most noteworthy difference in spectral shape of figure 2.4 is

for Pseudo-nitzschia, which forms distinct bifurcated peaks at 570 and 600 nm,

with a trough at 585 nm. This noticeable feature easily distinguishes the spec-

tral fingerprint of Pseudo-nitzschia from all other diatoms sampled. In contrast,

Chaetoceros forms a shoulder near 570 before peaking around 600 nm, while Tha-

lassiosira remains linear throughout this range, monotonically increasing. The

spectral fingerprint of Asterionellopsis is similar to that of Chaetoceros, with a

shoulder at 570 nm and peak at 600 nm, however the height of this peak, relative

to the shoulder, is greater for Asterionellopsis. For all genera, there are only small

differences in slope from the cyan to deep-blue (˜430 to 510 nm), with the largest

differences in yellow and orange (˜560 to 620 nm). There is relative uniformity at
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Figure 2.3: All cultures absorption spectra using the AC-s, spectra are mean-
normalized. The peak centered on 440 nm is the Soret band, and the peak over
670 nm is the Qy band.
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all other wavelengths. Thus, due to the similarities in the absorption spectra of

diatoms, genus-specific identification through ocean color will be most easily de-

rived from unique features in spectral backscatter centered within the absorbance

minima of 550 to 650 nm.
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(a) Mean-normalized reflectance fingerprints.

(b) All reflectance fingerprints in a 2x2 grid.

Figure 2.4: Nineteen bootstrapped spectra of the four diatom genera measured
in this experiment:Asterionellopsis (AG) is purple, Chaetoceros (CA) is yellow,
Pseudo-nitzschia (PN) is orange, and Thalassiosira (TR) is blue. Each spectrum
is the mean value of hundreds to thousands of absorption and backscatter mea-
surements (for each λi), converted to reflectance spectra using equation 2.2.
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Unsupervised machine learning algorithms were able to successfully distinguish

between the spectral fingerprints of Pseudo-nitzschia, Chaetoceros, and Thalas-

siosira (figure 2.5). Asterionellopsis was routinely misclassified as Chaetoceros.

We found the k-means algorithm performed optimally using k=3 (clustering into

3 groups). Using k=4 yielded similar results with the exception that Pseudo-

nitzschia was divided into two clusters, while Asterionellopsis was still misclassified

as Chaetoceros. Other non-Euclidean machine learning algorithms were applied

and results from these are provided in the appendix.
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Figure 2.5: All bootstrapped spectra clustered using the k-means algorithm for
k=3. Pseudo-nitzschia is abbreviated as ’PN’, Chaetoceros as ’CA’, Thalassiosira
as ’TR’, and Asterionellopsis as ’AG’. The number following the two letter phy-
toplankton ID code corresponds to the replicate culture number. ’bb’ refers to
backscatter. Therefore, PN1bb/PN2 corresponds to the backscatter spectra of
the first replicate culture of Pseudo-nitzschia divided by the absorption spectra of
the second replicate culture of Pseudo-nitzschia (a bootstrapped sample). Mea-
sured spectra are shown semi-transparent while the derived mean of each cluster
is opaque. Ignoring Asterionellopsis (only one sample), the clustering algorithm
successfully classified all taxa.

To accentuate spectral features, the second derivatives of reflectance finger-

prints from figure 2.4 were calculated and are shown in figure 2.6. These smoothed,

second derivative fingerprints were then compared using the Spectral Correlation
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Figure 2.6: Second derivative of the smoothed spectra.

Mapper (SCM) distance metric. A heatmap of the evaluated differences is shown

in figure 2.7. SCM performed better when subsetting the spectra in figure 2.6 from

550 to 600 nm, wavelengths where the majority of spectral differences are found.

Spectral Correlation Mapper calculates all Pseudo-nitzschia spectra as having a

mean intertaxon correlation of 98% +/- 1% (upper-left, red, right triangle), while

Thalassiosira spectra are deemed nearly identical to each other (99% or greater

correlation). Chaetoceros spectra are the most variable with a standard deviation

of 7% and an average correlation of 91%. Spectral correlation mapper finds aver-

age differences of 29% +/- 13% between Pseudo-nitzschia and Chaetoceros (top,

black box), and 34% +/- 7% between Pseudo-nitzschia and Asterionellopsis (bot-

tom, black rectangle). Spectral correlation mapper performed exceedingly well for

Pseudo-nitzschia and Thalassiosira (middle, black rectangle)—the most toxic and

most common diatoms, respectively—with average differences of 48% +/- 10%.
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Figure 2.7: Spectral Correlation Mapper applied to a subset of the reflectance spec-
tra (550 to 600 nm) from figure 2.6 to focus on regions of maximum differences
(visually assessed). The black boxes highlight comparisons between the finger-
prints of Pseudo-nitzschia (PN) and Chaetoceros (CA), Thalassiosira (TR), and
Asterionellopsis (AG), in descending order—summarized in table 2.2.
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Table 2.2: Mean spectral differences between Pseudo-nitzschia and other genera,
with standard deviations.

Mean Difference and Standard Deviation of Spectral Fingerprints:

Comparing Pseudo-Nitzschia and other Diatoms

Taxa Pseudo-nitzschia spp.

Chaetoceros affinis 29% ± 13%

Thalassiosira rotula 48% ± 10%

Asterionellopsis glacialis 34% ± 7%

2.5 Discussion

We found the spectral fingerprint of Pseudo-nitzschia forms a distinctive bifurcated

peak between 570 and 600 nm, which easily distinguishes this genus from the oth-

ers cultured under these ideal conditions. We also found that Pseudo-nitzschia’s

fingerprint was most easily distinguished from Thalassiosira’s, which was nearly

flat between 565 and 600 nm. This distinction is important because Thalassiosisra

is the most abundant bloom-forming diatom in the California Current. The ability

to discern between Thalassiosira and Pseudo-nitzschia based on spectral finger-

prints is valuable for a number of applications, e.g. productivity models, mapping

species distributions, and HAB monitoring. While Chaetoceros fingerprints were

more variable between these wavelengths, visual assessments and clustering algo-

rithms were still able to distinguish between the fingerprint of Chaetoceros, the

second most abundant diatom, and Pseudo-nitzschia.
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Unsupervised clustering algorithms (figure 2.5 and appendix, figure 2) success-

fully isolated the unique spectral fingerprints of Pseudo-nitzschia from those of

Thalassiosira, Asterionellopsis, and Chaetoceros. These algorithms proved robust

and versatile, successfully classifying Pseudo-nitzschia’s fingerprint regardless of

spectral permutations (full spectral range or subset spectra, raw spectra or the

second derivative, smoothed spectra or unsmoothed). The potential of automated

classifiers to identify unique water masses based on their optical properties, and

the scalability of these tools with increased computational power, will be of great

use for ocean color applications classifying unique biogeochemical provinces based

on spectral signatures. Unsupervised clustering algorithm’s success with these di-

atoms spectral fingerprints suggests an automated bloom-tracking system would

be able to identify the most common diatoms, and Pseudo-nitzschia, using the

PACE satellite.

2.5.1 Importance of backscatter

The experiments described here reveal the importance of integrating spectral backscat-

ter in ocean color models. Rethinking the assumption that spectral backscatter

is relatively featureless, being either flat or a monotonic function, may help us to

disentangle the complexity of case 2 waters (optically-complex waters influenced

by terrigenous inputs, namely CDOM and sediments). For an example of what

the reflectance fingerprints in figure 2.4 would look like if backscatter was spec-

trally flat, see figure 2.8. Spectral shapes in these ‘pseudoreflectances’ are nearly
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identical, with no translational differences between spectral features and only mi-

nor changes in the FWHM of peaks at 600 nm. Meanwhile, the variability and

features seen in figure 2.4 highlight the complexity of parameters that define the

spectra of backscatter: unique shapes, sizes, and intracellular structures. It is due

to the unique morphological features, stemming from the great diversity of the

diatoms, that the complexity in the spectral shapes of backscatter — and conse-

quently, reflectance fingerprints — enables the identification of Pseudo-nitzschia

within diatom assemblages.

From this knowledge we assert that absorption-based models, which have domi-

nated the literature thus far, will be unable to identify Pseudo-nitzschia remotely in

diatom-dominated systems. The absorption coefficients of diatoms are too similar

for the current spectral resolution of satellites to discriminate between. Alterna-

tively, the spectral shapes of backscatter between just these four genera presented

unique features and shapes (figure 2.2b). Due to the high computational power

required to model the spectra of backscatter for phytoplankton with such highly

detailed frustules and intracellular structures, we cannot directly attribute each

feature within spectral backscatter to a physical property of the phytoplankton

with absolute certainty, but we can make several educated guesses. We theo-

rize that the continuous increase of backscatter coefficients in bluer wavelengths

for Chaetoceros is due to the presence of many thin setae (spines) whose small

size should preferentially scatter shorter (bluer) wavelengths of light. We expect,

and observe, a similar increase in backscattering coefficients of bluer wavelengths

for Thalassiosira, due to the presence of many small chitinous thread structures
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which adorn the frustule. Many of these threads are joined together in the center

of the frustule to bind Thalassiosira cells in chain formations. We propose that

chitons’ increased absorption in blue-green wavelengths, relative to silica, makes

these thread structures less efficient backscatters than setae. The varying efficien-

cies of backscatter for these distal structures may explain the observed differences

in figure 2.2a between Thalassiosira and Chaetoceros in blue-green wavelengths.

We note that natural populations of Asterionellopsis glacialis often have large

siliceous spikes, similar to Chaetoceros setae, however in our cultures the length

of these spikes were diminished compared to natural samples. This may explain

why Asterionellopsis does not have the same high backscatter coefficients in blue

wavelengths as Chaetoceros and Thalassiosira. That said, both Chaetoceros and

Thalassiosira possess numerous setae or threads per cell, whereas Asterionellopsis

has only a single, large spike per individual. As a result, the backscatter spectrum

of Asterionellopsis in blue-green wavelengths may be more strongly influenced by

absorption features—the Soret band and fucoxanthin—than by elevated backscat-

ter from a single siliceous spike, leading to the spectral shape observed in figure 2.2.

The peak in backscatter for all species past 660 nm (figure 2.2a) is likely due

to inelastic scatter in the form of fluorescence, rather than true backscatter. This

fluorescence signal is likely a factor of the large FWHM (˜25 nm) of light emitted

and accepted by the HyperBB in red wavelengths. Past 660 nm, the Hyperbb

efficiently excites phytoplankton photosystems due to a high absorption coefficient

from the chlorophyll Qy band. Some of the absorbed photons are subsequently

re-emitted by the phytoplankton at slightly redder wavelengths as fluorescence,
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which are then detected by the instrument and registered as backscatter. This

effect appears to be an instrument-specific artifact of the HyperBB’s detection

window, rather than a property of phytoplankton scattering itself. Nevertheless,

agreeing with the postulates of Bricaud, Morel, and Prieur, 1983, the backscatter

spectra presented more spectral complexity and shape, and therefore information,

than the spectra of total scatter alone (figure 2.2b versus appendix, figure 1).

Figure 2.8: What if backscatter was flat? Pseudoreflectances shown assuming bb
is spectrally flat for all samples.
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2.5.2 Orientation of cells

The backscatter spectra, and derived reflectance fingerprints, of Pseudo-nitzschia

have large standard deviations, which exceed that of all other phytoplankton sam-

pled. The variability in backscattering coefficients increased with bluer wave-

lengths. This phenomenon was observed in all taxa. We theorize that these uncer-

tainties may lie in the orientation of the cells. These diatoms were measured in a

turbulent environment, and while the surface of the ocean is often assumed to be

well-mixed, this is not always the case. During periods of laminar flow, or stratifi-

cation, we expect phytoplankton to orient themselves to the currents or sunlight,

respectively (Nayak et al. 2018, Karp-Boss and Jumars 1998). Aligned orientation

may affect the spectrum and intensity of backscattered light (orientation can in-

crease the intensity of backscatter by more than 30% (Marcos et al. 2011)). The

backscattering coefficients, and resulting spectral features, for non-spherical parti-

cles, are still largely unknown (Clavano, Boss, and Karp-Boss 2007). We do know

however, that shape affects scattering coefficients, and that for non-spherical par-

ticles, the apparent shape (cross-sectional area, relative to incoming light source

and detector) changes with orientation. We hypothesize that the large differences

in cross-sectional area between the apical axis and top-down valve-apex view of

Pseudo-nitzschia contributed to its large variability in backscatter values. The

apical axis presents the largest cross-sectional area when facing the light-source

and detector, an oblate spheroid. While in a top-down view of the valve-apex,

even Pseudo-nitzschia forming long chains present but a small, nearly spheroid,
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cross-sectional-area to the sensor. This small, spherical cross section would ele-

vate backscatter in bluer wavelengths and reduce overall scatter. The difference in

apparent size and shape between apical and valve-apex views of Pseudo-nitzschia

will be greater than that of any other diatom sampled in this experiment. In-

deed, due to Pseudo-nitzschia’s unique method of chain formation, this difference

in apparent size and shape, and the proposed resulting variability in backscatter

coefficients, would likely be higher than for the vast majority of other marine phy-

toplankton, excluding a few penates with similar morphologies and behaviors (e.g.

Rhizosolenia). In a turbulent medium, e.g. our inline system, orientation is ran-

domized, the direct valve-apex view will be significantly less probable than some

angle of the planar view. Future studies of the scattering properties of these plank-

ton under laminar flows or stratified conditions will be of benefit as we expect large

differences in the magnitude of backscatter and potentially even spectral shape in

different orientations. We expect the largest differences to be in the signature of

polarization.

2.5.3 Distance metrics and proposed use

To quantify differences between spectra we used the distance function SCM. Com-

pared to other distance functions, SCM is easy to interpret (Pearsons’ correlation

coefficient (r)) and insensitive to changes in magnitude, while still responsive to

differences in spectral shape. Spectral Correlation Mapper performed best after

applying the second derivative to the reflectance fingerprints as spectral features
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were accentuated. The quantification of spectral differences is important for es-

tablishing baselines to compare ocean color and modeled reflectance fingerprints.

The low standard deviation in mean reflectance fingerprints for Pseudo-nitzschia

(1%) suggests that stringent cutoffs can be applied when looking for Pseudo-

nitzschia dominated blooms. Differences between the most abundant diatoms

and Pseudo-nitzschia ranged from 29 to 49%. When comparing ocean color to

the molded fingerprints of Pseudo-nitzschia, the threshold for similarity should

therefore be greater than 70%. Ocean color datasets can be flagged for pixels

with high spectral similarity to the modeled reflectance fingerprints, providing a

scalable framework.

By using distance metrics, we reduced a spectrum, or a comparison of spectra,

to one number. In doing so, we limit the information that can be derived. This

reductionist approach is a double edge sword, facilitating easy cross-comparisons

and data processing, but potentially removing key sources of information. Relying

solely on distance metrics may be naive.

We theorize that distance metrics will work well under bloom-conditions when

the optical properties of the dominant phytoplankton are the primary contributor

to ocean color. In this regard, after removing the reflectance spectrum of pure

water from the ocean color signal, we should have a spectrum that matches closely

to the modeled fingerprints - if the bloom is dominated by the most abundant taxa

found in the system, or Pseudo-nitzschia.

However, there will be greater spectral variation in natural samples due to

mixed assemblages and other optically active components (CDOM, detritus, sed-
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iments). This variability will make it difficult for distance metrics to select pixels

where key phytoplankton groups are present, as the influence of other optically

active components will shift the spectral shape further from that of the mod-

eled fingerprints (creating larger differences). Fortunately, the spectral shapes of

CDOM and detritus are often featureless, mononic functions (or so we assume!)

which should not greatly influence the retrievals of our target phytoplankton. Fur-

thermore, these components have the greatest influence at ultraviolet and blue

wavelengths - spectral regions which we disregard in this proposed framework for

diatom identification. Corrections can also be made to account for CDOM con-

tributions using widely-accepted remote sensing algorithms (e.g. Zhu et al. 2011,

Aurin, Mannino, and Lary 2018, Bélanger, Babin, and Larouche 2008, Lee et al.

2009). The resuspension of sediments in the nearshore environment will be more

difficult to account for, as the reflectance of these materials align with the yellow-

orange wavelengths (560 - 630 nm) used for Pseudo-nitzschia identification. This

may prevent identification in turbid estuaries, and the very immediate nearshore

environment. Fortunately, these spaces encompass but a small fraction of the to-

tal area of our system in which this framework should be used (the California

Current).

Therefore, we anticipate the primary obstacle in diatom identification will be

due to competing optical properties from mixed assemblages. While distance met-

rics should still be used to pull out pixels (spatial bins) with high similarity to

modeled fingerprints, this should be followed up by further analysis into the spec-

tra of pixels that do not pass the threshold similarity. This should be done by
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first using a clustering algorithm to subset the region of interest into ’k’ bins with

similar spectral shapes - so that one does not have to look at every single pixel,

but a representative sample. From these k-bins a visual analysis, or simple band

ratios near 570, 585, and 600 nm, may be used to identify Pseudo-nitzschia within

mixed assemblages. The competing optical properties of many unique phytoplank-

ton taxa may denature the structure of the in situ reflectance too much for distance

metrics to discern. However, if Pseudo-nitzschia is present in sufficient concentra-

tion, the distinct ’M’-shape seen in figure 2.4 should be present. If k is very large

and visual assessment of all bins is impractical, band ratios of 570:585 nm and

585:600 nm can be used to search for the bifurcated peaks. In situ preliminary

reflectance data of mixed assemblages containing Pseudo-nitzschia have displayed

the distinct bifurcated peaks to be present even in the face of many competing opti-

cal signals. Future studies may investigate the concentrations required for, and the

detection limits of, these plankton with respect to community assemblages. These

future studies and others measuring hyperspectral backscatter will be useful for

the development of hyperspectral libraries and inverse models. As higher spectral

resolution and lower bandpass sensors become available, specifically open-source

and accessible tools (e.g. Novak, Burmeister, and Röttgers 2024), we anticipate

other genus-specific spectral features to become known. This will serve to further

constrain uncertainties in all ocean color models - including this study.
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2.5.4 Conclusion

Diatoms provide a wide range of ecosystem services and sustain commercial fish-

eries success in upwelling systems. But there is one diatom, Pseudo-nitzschia, that

has the potential to shut down these fisheries over large spatial scales. Marine

resource managers, commercial fishermen, aquaculturists, and coastal communi-

ties need a framework to identify when and where Pseudo-nitzschia is blooming

to mitigate economic losses and ecosystem damage. Current practices to monitor

Pseudo-nitzschia are costly and spatially fragmented. Hyperspectral remote sens-

ing platforms, which can continuously sample large areas, have been proposed as

tools to identify harmful algal blooms, but their ability to distinguish genera within

groups was previously uncertain. Our models show that genus-specific identifica-

tion and HAB monitoring using hyperspectral remote sensing platforms is possible.

This capability will be used to inform local agencies of HAB events in near-real

time and facilitate targeted in situ sampling of toxin levels.

This work quantified the differences in spectral shapes of key diatom genera.

The pronounced differences enable the distinction of the most common genera in

the California Current—Thalassiosira, Chaetoceros, and Asterionellopsis—from

the toxigenic Pseudo-nitzschia using ocean color data. This work is the first to

show the unique reflectance fingerprints for the dominant primary producers in

one of the world’s most productive regions, the California Current. It is also the

first to quantitatively discern the degree of difference between them. This was only

possible due to the high spectral resolution of new hyperspectral sensors, which
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measure significantly more wavelengths of light than their historic counterparts.

The continued development of comprehensive hyperspectral libraries will enhance

our ability to identify phytoplankton species and detect HABs remotely and over

broad spatial scales. While field-based studies will be necessary to validate the

fingerprints derived from these experiments, our data provide evidence that the

significant differences in the spectral shapes of these key plankton are sufficient

to discern between them using the methods provided. These results offer a new

approach for monitoring biodiversity and detecting harmful algal blooms.
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Chapter 3: Reflections and Future Directions

3.0.1 In Situ Validation

The next step forward will undoubtedly be thorough testing of the proposed

model’s skill through in-situ validation. These validations will require taking water

samples, then enumerating and identifying the phytoplankton taxa therein. This

will provide an estimate of the phytoplankton community composition and allow

us to determine Pseudo-nitzschia’ s potential abundance in these samples.

As the water samples are taken, concurrent measurement of the water body’s

optical properties should be recorded. This can be done in a number of ways.

First, the user can record the inherent optical properties of the water. Inherent

optical properties (IOPs) include absorption, and backscatter. The absorption

and backscatter coefficients do not change with the surrounding light field – rather

these are related to the inherent efficiency, or ability, of a substance (a molecule of

water, or a Thalassiosira cell) to absorb or scatter light. Theoretically, the IOPs

of a substance remain constant as long as that substance remains in the same state

(e.g. temperature and salinity for a water body, physiological state for a cell).

Second, the user can use an above, or in-water radiometer to measure the

reflectance of the water body directly. This is essentially using a hyperspectral

camera to take a picture of the water – and record the spectra of light that is



47

being emitted from the surface. If this is done, the spectrum of light from the sun

and sky must also be recorded as this version of in-situ reflectance is an apparent

optical property. This means that the spectrum of light leaving the water’s surface

is influenced by the apparent light field – which is the light field of the sun and sky.

This apparent light field changes with cloud cover, time of day, and atmospheric

aerosols.

The last option is the most rewarding – but also challenging. Measuring the

reflectance of the in-situ sample using a remote sensing platform. The reward

scales with difficulty. Easiest: drones are affordable, easy to deploy, and modular

– as they can be fitted with a variety of radiometers. However, drones only allow us

to sample relatively small sections of the nearshore environment. Intermediate:

low-flying aircraft have a larger spatial footprint and can cover offshore waters.

However, these operations are costly and take significant effort to organize. Most

difficult: ocean color satellites cost billions of dollars and can take decades of

planning to materialize. Once in orbit, these satellites still require millions of

dollars in calibration and validation efforts to produce reliable data – which must

be corrected for atmospheric influence.

The reward? Global coverage of ocean reflectance every few days. In particu-

larly cloudy systems (such as the Pacific Northwest), drones and low flying aircraft

may still be advantageous during episodic upwelling-driven blooms, but satellites,

such as NASA PACE, provides data at no cost to the user. The no-cost entry to

use PACE ocean color products makes this system particularly well suited for an

accessible and scalable HAB early warning system.
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The collection of optical data using any of these three methods in combination

with taxonomic classification of the phytoplankton community will allow us to val-

idate the relationship between Pseudo-nitzschia and reflectance found in chapter 2.

The spectra of water samples containing Pseudo-nitzschia should be analyzed for

the bifurcated peak displayed in figure 2.4. Since all taxa measured had a peak in

reflectance at 600 nm, a ratio of the reflectance values at ∼560 and 585 nm should

suffice to identify the Pseudo-nitzschia-specific optical fingerprint. Ratios greater

than 1 will be indicative of Pseudo-nitzschia presence. In our preliminary valida-

tion results (not shown), we have subtracted the modeled reflectance signature of

pure water from our in-situ samples. This allows us to detect Pseudo-nitzschia in

low concentrations where the dominant optical signals are from the water itself.

3.0.2 Integration with Existing Monitoring Frameworks

The California—Harmful Algae Risk Mapping (C-HARM) model was developed to

combat the uncertainty in Pseudo-nitzschia’s presence, along with its variable toxin

production, along the California coast (Anderson et al. 2016, 2011, 2009, 2006).

California-Harmful Algae Risk Mapping integrates regional ocean circulation and

statistical models with remote sensing data to provide forecasted predictions for

the presence of toxic Pseudo-nitzschia. The remote sensing data integrated into the

model predicts Pseudo-nitzschia cellular abundance using the ratio of reflectance

at 488 to 555 nm, while the intensity of reflectance at 555 nm is coupled with a

reflectance-derived chlorophyll product to estimate toxin concentrations. These
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remote sensing products and bands, while useful correlative variables within the

Southern California Current, are not strictly tied Pseudo-nitzschia. Hence, extrap-

olation to higher latitudes within the California Current may be less reliable if the

biogeochemical relationships to Pseudo-nitzschia and its toxicity are dynamic.

The PACE satellite’s hyperspectral resolution will allow us to better target the

spectral regions of interest identified in chapter 2 – providing an optical proxy

directly tied to the inherent optical properties of Pseudo-nitzschia themselves. We

hope that the findings of chapter 2 can therefore serve to augment the current

C-HARM model by integrating these newly discovered hyperspectral bio-optical

fingerprints through PACE data. This may increase C-HARM’s skill in the North-

ern California Current (Oregon, Washington, British Columbia). This is especially

important because these temperate zones must be sampled for Pseudo-nitzschia

and domoic acid much more frequently than Central and Southern California due

to strong seasonality and high variability (Frolov, Kudela, and Bellingham 2013).

This direct spectral pathway for detection may further allow the extrapolation

of this approach to other systems where Pseudo-nitzschia is present in harmful

concentrations.
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Additional Distance Metrics Additional distance metrics we explored in-

cluded: cosine similarity, Euclidean distance of cumulative spectra, and Kullback-

Leibler pseudo-divergence.

Cosine similarity is defined as:

Cosine Similarity = cos(θ) =
A ·B

∥A∥∥B∥

A ·B =
n∑

i=1

AiBi, ∥A∥ =

√√√√ n∑
i=1

A2
i , ∥B∥ =

√√√√ n∑
i=1

B2
i ,

where Ai and Bi are two distinct spectra, or ’fingerprints’. Cosine similarity takes

one point of a spectrum (i) and places it in one-dimensional space (a floating dot), it

then iterates upon this, placing another point (i+1) and adding a dimension (d+1).

We now have two coordinates in 2-dimensional space which we can draw a line to

from the origin (i.e. a vector in an x - y plane). The algorithm continues to add

coordinates and subsequent dimensions until we have a space with equal dimensions

and coordinates as our spectrum (in this case we are evaluating wavelengths 430

- 670 at 5 nm increments (i & d = 48)). For these spectra we create a single

vector in 48-dimensional space derived from the coordinates and take the cosine

of this vector, spectrum a, to that derived for spectrum b; where spectra a and

b represent the ’fingerprints’ of two unique phytoplankton taxa. When we apply

a weighting function to the spectra (to isolate colors with the most inter-taxa

variability), we reduce the dimensionality to the number of wavelengths being

analyzed. It should be noted that cosine similarity is processed in Euclidean space
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and therefore assumes different wavelengths are statistically independent from one

another. We know of course that this is untrue, as the distinct bands that compose

hyperspectral data are highly correlated (440 nm is deep blue, and 441 nm is just

slightly less deep blue).

In cosine space when two vectors are orthogonal to each other (at a 90◦angle),

we infer that they are entirely different by the metrics that cosine similarity mea-

sures; in contrast, vectors with a 0◦ angle indicate identical spectra. Cosine simi-

larity is a non-linear metric, for example, a cosine value of 0.9 corresponds to an

arccos(0.9) = 24.8◦ angular difference in n-dimensional space (a 0.9 - 1 = 10% dif-

ference in cosine similarity space), while a value of 0.99 would be an arccos(0.99)

= 8.1◦ angular difference (0.99 - 1 = 1% difference in cosine similarity space).

Deborah et al. 2016 found cosine similarity to work well with theoretical data

but when applied to real spectra, noise contaminated accurate measurements. This

issue can be alleviated by a Savityzky-golay smoothing function. Both cosine

similarity and SCM are common in the literature and were designed to ignore

magnitude changes—we often only care about spectral shape and not intensity.

While cosine similarity and SCM respond well to overlapping translational

changes (wavelength/hue changes), they saturates when these changes become too

large (when spectral features no longer overlap). This is not an issue for our com-

parisons as the center wavelengths of spectral features are well-aligned, largely due

to the common pigment classes shared between diatoms. This means the dominant

parameter in our distance metric is standard deviation, which cosine similarity and

SCM excel at measuring.
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The two following methods are sensitive to changes in magnitude and do

not saturate with increased distance between features. These are the Euclidean

distance of Cumulative Sum (ECS) and the Spectral Kullback-Leibler Pseudo-

Divergence (KLPD). Both of these metrics fully satisfy the three fundamental

criterion (magnitude, translation, standard deviation) for a distance metric. One

caveat to ECS is that this function integrates the spectra from the lowest to high-

est values, placing more importance on the bluer wavelengths. The integration can

be flipped to place more importance on the red wavelengths, but this means that

the derived differences between spectra will change depending on how the metric

is integrated. Kullback-Leibler pseduo-divergence is a variation on the standard

Kullback-Leibler divergence function, which is used for probability density func-

tions, hence pseudo-divergence. Kullback-Leibler pseduo-divergence violates the

theory of triangular inequality which means that we expect different, albeit similar,

responses when comparing spectrum i to spectrum j as when comparing spectrum

j to spectrum i. However, all spectral features are evenly weighted. For both ECS

and KLPD, a value closer to 0 means the spectra are more similar, unlike cosine

and SCM where a value closer to 0 means the spectra are more dissimilar.

Euclidean distance of Cumulative Spectra (ECS), processes the spectra as a

distribution:

dECS(S1, S2) =

(∫ λmax

λmin

(s′1(λ)− s′2(λ))
2
dλ

) 1
2

(1)



77

s′i(λc) =

∫ λc

λmin

si(λ)dλ , (2)

where s1 and s2 are two distinct spectra, or ’fingerprints’ to be compared.

Kullback-Leibler Pseudo-Divergence (KLPD) is similar to ECS, but is not spec-

trally weighted:

divKL′(S1, S2) = k1 ·KL(S̄1, S̄2) + k2 ·KL(S̄2, S̄1) + (k1 − k2) log

(
k1
k2

)
(3)

shape : k1 ·KL(S̄1, S̄2) + k2 ·KL(S̄2, S̄1) (4)

energy or intensity : (k1 − k2) log

(
k1
k2

)
. (5)

Both ECS and KLPD performed well (intertaxon differences were large, while

intrataxon differences were small) but are only to provide relative differences,

rather than absolute values like cosine similarity and SCM.

The value in both ECS and KLPD comes from their ability to show the relative

differences between fingerprints. ECS presents the largest dynamic range with the

center, identical values (whited out) at 0 while maximum differences are inter-

preted for Thalassiosira and Pseudo-nitzschia around 850. KLPD presents lower

dynamic range, reaching a maximum of 59 for Thalassiosira and Pseudo-nitzschia,

but presents the same general patterns. Looking at figure 5 we can see three

red hotspots; one in the top left, the center-bottom-right, and nearly the bottom
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Figure 1: Normalized scatter spectra for all species
. All species have scatter spectra that visually appear to be more similar
intraspecifically than interspecifically. The standard deviations are low and
similar across species. PN 3 is different from other triplicates due to a pump
failure (the more flat, orange line). These spectra of total scatter mimic an

inversion of the absorption spectra.
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Figure 2: Spectral clustering: unsupervised machine learning using cosine similar-
ity on all raw spectra. Cluster number set to 3. The absorption spectra of the
first triplicate of Chaetoceros (CA1a) is misclassified as Thalassiosira (TR) for all
bootstrapped spectra. Asterionellopsis is misclassified as Pseudo-nitzschia.
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Figure 3: Iterations of the Savitzky-Golay smoothing algorithm applied to the
reflectance spectra. The top row shows iterations of the smoothing function varying
the polynomial order with a fixed window length of 11 (55 nm), while the bottom
row shows iterations changing the window-length from 13 (65 nm) to 17 (85 nm)
with a fixed polynomial of 4. We selected the combination that preserved the most
spectral features while removing noise. The two combinations that did this best
were of polynomial size 4, with a window size of 11 or 13). We chose window size
13 matching Vandermeulen et al. 2017.
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Figure 4: Second derivative of unsmoothed (raw) spectra
, one sample taken from each taxon. Note the accentuation of ’features’ in

wavelengths shorter than 550 nm. Whether these are real spectral features that
we can glean information from or noise is unknown. By taking the mean of many
samples, noise should be removed, but smoothing is a cautionary step to ensure

we are not mistaking noise for ’true’ signal.

right. These are emphasizing the intrataxon similarities between Pseudo-nitzschia,

Chaetoceros, and Thalassiosira.

On the full raw spectra, cosine similarity performed poorly in terms of percent-

age differences, all spectra were given identical values to the 0.00 level (spectral

differences were all ¡ 1% in cosine space (heatmap not shown)). However, when

we increased the decimal limit we found that although differences were less ¡ 1%,

these small differences were still sufficient to successfully cluster most of the re-

flectance fingerprints into their respective taxonomic groups (figure 2). Both ECS

and KLPD perform best on the full raw spectra, likely because they are able to

measure differences in magnitude and do not saturate with distance for trans-

lational changes. Cosine similarity and SCM perform best after a derivative is

applied and the spectra is subset to a region of interest.
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Figure 5: This figure displays two confusion matricies for the ECS and KLPD
fucntions. There is no smoothing or alternate processing. Note the asymmetry in
these heatmaps due to differences in integration for ECS (bottom is integrating
from blue to red, top is integration from red to blue) and the triangular inequality of
KLPD - the triangular inequality means we expect different results based on order
of comparison (i.e. spectra a vs spectra b ̸= spectra b vs spectra a). It is important
to note that KLPD performs better when comparing spectra of different diatoms
against Pseudo-nitzschia, rather than comparing Pseudo-nitzschia spectra against
the other diatoms. Euclidean distance of cumulative spectra performs better when
integrating the spectra from red to blue wavelengths, rather than blue to red. All
values for KLPD and ECS are returned in absolute values since we are interested
in the magnitude of the differences and not the sign.
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